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ABSTRACT

Various functionalized steroidal side chains were conveniently accessed by a modified Julia olefination strategy using a common sulfone donor
and an appropriate R-branched aldehyde acceptor. For the coupling of these hindered classes of reaction partners (and in contrast to typically
observed trends), the benzothiazolyl(BT)-sulfone anion gave superior outcomes compared to the phenyltetrazolyl(PT)-sulfone anion.

Steroids with oxidatively modified side chains comprise
an important family of compounds, largely because of their
biological properties (e.g., 1-4, Figure 1). Our interest in
the preparation of analogs of sea lamprey pheromone
components (e.g., 31d) drove a need for a flexible strategy
in which a common intermediate could be used in a con-
junctive fashion toattachanarrayof structurallydiverse side
chains. In this regard,wehave studied theuseof themodified
Julia olefination2 involving C22-sulfonyl steroids as the
anionic donor partner, and our results are described here.
Previously, steroidal aldehydes 5 have been used as the

electrophilic acceptor component in Horner-Wadsworth-
Emmons (HWE, 6a),3a-e modified Julia (6b),3f andWittig

(with stabilized ylides, 6c)3g-m olefination reactions to
forge the C22-C23 alkene in products 9. Alternatively,
steroidal phosphonium ylide (7a) and phenylsulfonyl (7b)

Figure 1. Some of the related highly potent C24-functionalized
steroids (1,1a,b 2,1c 3,1d and 41e).
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donors were coupled with aldehyde acceptors 8 via
Wittig3n and classical Julia3o olefination reactions, respec-
tively (Scheme 1). In this study, we have established the
modified Julia coupling with donors 7c, primarily with the
benzothiazolyl (BT) sulfone [although we have also com-
pared the use of the 1-phenyl-1H-tetrazol-5-yl (PT) sulfone]
and a variety of acceptor aldehydes 8.

To test the feasibility, both the PT and BT sulfones

13-PT and 13-BT, respectively, were prepared as out-

lined in Scheme 2 from i-stigmasteryl methyl ether (10,

two steps, 74% yield from stigmasterol).4 Ozonolysis

(and reductive workup with NaBH4) of the disubsti-

tuted olefin smoothly provided the primary alcohol 11

[and (S)-2-ethyl-3-methylbutan-1-ol]. It is worth noting

that a major problem associated with the ozonolysis

of i-steroids, namely the undesired oxidation of the

methine C-H bond at the C6-ether,5 is avoided by
using the unconventional solvent tetrahydrofuran as a
component of the reaction medium (THF/MeOH; 10:1).
The resulting alcohol 11 was formed in high yield
(86%), and butyrolactone was isolated as a byproduct,
its amount increasing with increased reaction time. We
believe that THF effectively buffers the ozonolysis reac-
tion by acting as a sacrificial reductant, preventing
overoxidation of 10 and its derived products. The thio-
ethers 12-PT and 12-BT were then prepared from 11

using the Mitsunobu protocol (PTSH or BTSH, DIAD,
PPh3). Each was subsequently oxidized to the sulfone
13-PT or 13-BT (ammonium paramolybdate, H2O2).
We first attempted olefination using the potassium anion

of 13-PT and 13-BT. Preforming the anion (KHMDS,
THF,-78 �C) and addition of propionaldehyde provided
none of the expected olefination product, nor was the
starting sulfone recovered. When a solution of KHDMS
was added at -78 �C to a THF solution containing
both the sulfone 13-BT and propionaldehyde, the desired
propylidene coupling product was isolated in low yield
with the cis isomer predominating.

We then turned our attention to the sodium anions derived
from13-PTand13-BTby studying the relative stabilityof the
sulfones uponmetalationwithNaHMDS inTHFat-78 �C

Scheme 1. Overview of the Coupling Strategies To Construct
Oxygenated Steroidal Side Chainsa

a St=generic steroid nucleus; BT=benzothiazolyl; PT=1-phenyl-
1H-tetrazol-5-yl.

Scheme 2. Synthesis of the Key Sulfones 13-PT and 13-BT

Scheme 3. Recovery/Stability of Sulfone Anionsa

a Stoichiometric ratio of sulfone/NaHMDS was 1:1.2.
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(Scheme 3). Each anionwas quenchedwith saturatedNH4Cl
solution 15 min after the addition of base. The starting
sulfones were reisolated by SiO2 chromatography (MPLC)
with 61 vs 96% recovery efficiency, respectively. This shows
that the 13-BT anion was more stable than that of 13-PT.

We next tested the relative efficiency of each of the donor
sulfones 13 to effect olefination using butyraldehyde (8a) as
a simple acceptor substrate and NaHMDS as the base
(Scheme 4). The behavior mirrored that seen in the above
stability studies; namely, the yield of alkene 14a was higher
when the benzothiazolyl sulfone 13-BTwas used.Moreover
(and as described elsewhere6), the use of HMPA as an
additive improved the 14a-E:14a-Z product ratio.
We then studied the olefination reactions of a series of

aldehydes 8with 13-BT as the sulfone donor (Table 1). The
aldehydes contain R-methyl or R-alkoxy branching. Alde-
hyde (S)-8b provided 14b both in high yield and with
excellent E/Z-selectivity (entry 1). Use of the enantiomeric
aldehyde (R)-8b gave the C24-epimer in 80% yield and
with an E/Z-ratio of 82:18 (entry 2). Entries 3-5 demon-
strate the additional scope of the method. Aldehyde (S)-8e
showed a high E/Z-selectivity. Use of the racemate rac-8e
(2 equiv, entry 6) produced similar amounts of C24-
epimers. While the E/Z-ratio of product 14e-(24R) was
essentially the same as that observed in entry 5 (i.e., 90:10),
the epimericmixture of alkenes 14e-(24S)was formedwith
reduced selectivity for alkene geometry (i.e., 65:35). Thus,
the degree of matching/mismatching for the substrates in
either entry 1 vs 2 or 5 vs 6 is small.
In conclusion, this study demonstrates the utility of a

modified Julia olefination strategy for providing easy access
to steroidal products containing a variety of functionalized
side chains. The steric demandof bothR-branched coupling
partners that participate in this transformation is note-
worthy. Contrary to the general trend observed for the
modified Julia reaction using less hindered pairs of sub-
strates, the olefination efficiency and alkene diastereoselec-
tivity of the steroidal BT-sulfonyl donor was found here to

be superior to the PT-sulfonyl version.7 This is likely a result
of the greater lability of the metalated PT-sulfone anion
(Scheme 3). An ancillary observation of note is the use of
THF as the bulk solvent to improve the ozonolysis of
cyclopropyl-contianing substrate 10. This protocol may be
useful for chemoselective transformation of other complex
substrates bearing functionality sensitive to oxidation.
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Scheme 4. Olefination of Sulfones 13-PT or 13-BT with 8aa

a Stoichiometric ratio of sulfone/8a/NaHMDS was 1:1:1.2.

Table 1. Alkenes 14 via the Modified Julia Olefination

a E/Z ratios determined by 1H NMR analysis of product mixtures.
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